If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+100x-12000=0
a = 1; b = 100; c = -12000;
Δ = b2-4ac
Δ = 1002-4·1·(-12000)
Δ = 58000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{58000}=\sqrt{400*145}=\sqrt{400}*\sqrt{145}=20\sqrt{145}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(100)-20\sqrt{145}}{2*1}=\frac{-100-20\sqrt{145}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(100)+20\sqrt{145}}{2*1}=\frac{-100+20\sqrt{145}}{2} $
| 11/15=x-8/15 | | 5/8=n/(n-9) | | 4x-3+2x=21 | | 0.26=g+10-3g | | 4(2x-5)-8=36 | | x+-27=540 | | ½+x=5/4 | | 4x+7=3x+22=10x-30 | | 2(2x+3)+x=2x+x+16 | | 3m-5=8m | | 4x+-3=0 | | 3/7m-1/7=1/70 | | 4x=1/25 | | 65/x=42.25 | | 5t+16=6+-5t | | 2b+5b=21 | | 2(47)=v | | 20y/3+40y=1800 | | x/28-1/4=24 | | 4x+7=3x+22 | | 23=-5x+8 | | 0.3(0.27+2x)=1.3x | | 20y/3+4y=1800 | | 6(r+9)-2(1-r)=1 | | .05(8x+6)=9 | | 7-m/5=16 | | (5+w)(4w-1)=0 | | 4x+6-9=0 | | 35+5a=3(4a+1)-3a | | 3(2x+11)=4x+3 | | 92=2n | | -6(7x+7)=7(-6x-6) |